Jupyter TensorFlow 範例¶
在 Kubeflow Notebooks 中使用 Jupyter 和 TensorFlow 的範例。
Mnist Example¶
-
創建 "Notebook" 時,選擇一個安裝了 Jupyter 和 TensorFlow 的容器鏡像
- 例如,
jupyter-tensorflow-full:v1.7.0
- 例如,
-
使用 Jupyter 的界面創建一個新的
Python 3
筆記本。 -
複製以下程碼並將其粘貼到您的筆記本中:
# Set up TensorFlow import tensorflow as tf print("TensorFlow version:", tf.__version__) # Load a dataset mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 # Build a tf.keras.Sequential model model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10) ]) predictions = model(x_train[:1]).numpy() tf.nn.softmax(predictions).numpy() loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss_fn(y_train[:1], predictions).numpy() model.compile(optimizer='adam', loss=loss_fn, metrics=['accuracy']) # Train and evaluate your model model.fit(x_train, y_train, epochs=5) model.evaluate(x_test, y_test, verbose=2) probability_model = tf.keras.Sequential([ model, tf.keras.layers.Softmax() ]) probability_model(x_test[:5])