Quickstart¶
本快速入門指南示範如何使用 LangGraph Graph API 或 Functional API 建立計算器代理程式。
-
如果您希望將代理定義為節點和邊的 graph,請使用 Graph API。
-
如果您希望將代理定義為單一函數,請使用 Functional API。
Use the Functional API¶
1. Define tools and model¶
在這個範例中,我們將使用 Claude Sonnet 4.5 模型,並定義加法、乘法和除法工具。
from langchain.tools import tool
from langchain.chat_models import init_chat_model
model = init_chat_model(
"claude-sonnet-4-5-20250929",
temperature=0
)
# Define tools
@tool
def multiply(a: int, b: int) -> int:
"""Multiply `a` and `b`.
Args:
a: First int
b: Second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Adds `a` and `b`.
Args:
a: First int
b: Second int
"""
return a + b
@tool
def divide(a: int, b: int) -> float:
"""Divide `a` and `b`.
Args:
a: First int
b: Second int
"""
return a / b
# Augment the LLM with tools
tools = [add, multiply, divide]
tools_by_name = {tool.name: tool for tool in tools}
model_with_tools = model.bind_tools(tools)
from langgraph.graph import add_messages
from langchain.messages import (
SystemMessage,
HumanMessage,
ToolCall,
)
from langchain_core.messages import BaseMessage
from langgraph.func import entrypoint, task
2. Define model node¶
模型節點用於呼叫 LLM 並決定是否呼叫工具。
Tip
@task 裝飾器將一個函數標記為一個任務,該任務可以作為代理的一部分執行。任務可以在入口函數中同步或非同步呼叫。
@task
def call_llm(messages: list[BaseMessage]):
"""LLM decides whether to call a tool or not"""
return model_with_tools.invoke(
[
SystemMessage(
content="You are a helpful assistant tasked with performing arithmetic on a set of inputs."
)
]
+ messages
)
3. Define tool node¶
工具節點用於呼叫工具並傳回結果。
@task
def call_tool(tool_call: ToolCall):
"""Performs the tool call"""
tool = tools_by_name[tool_call["name"]]
return tool.invoke(tool_call)
4. Define agent¶
該代理是使用 @entrypoint 函數建立的。
Info
在 Functional API 中,無需明確定義節點和邊,只需在單一函數中編寫標準控制流邏輯(循環、條件語句)即可。
@entrypoint()
def agent(messages: list[BaseMessage]):
model_response = call_llm(messages).result()
while True:
if not model_response.tool_calls:
break
# Execute tools
tool_result_futures = [
call_tool(tool_call) for tool_call in model_response.tool_calls
]
tool_results = [fut.result() for fut in tool_result_futures]
messages = add_messages(messages, [model_response, *tool_results])
model_response = call_llm(messages).result()
messages = add_messages(messages, model_response)
return messages
# Invoke
messages = [HumanMessage(content="Add 3 and 4.")]
for chunk in agent.stream(messages, stream_mode="updates"):
print(chunk)
print("\n")
完整程式碼範例
# Step 1: Define tools and model
from langchain.tools import tool
from langchain.chat_models import init_chat_model
model = init_chat_model(
"claude-sonnet-4-5-20250929",
temperature=0
)
# Define tools
@tool
def multiply(a: int, b: int) -> int:
"""Multiply `a` and `b`.
Args:
a: First int
b: Second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Adds `a` and `b`.
Args:
a: First int
b: Second int
"""
return a + b
@tool
def divide(a: int, b: int) -> float:
"""Divide `a` and `b`.
Args:
a: First int
b: Second int
"""
return a / b
# Augment the LLM with tools
tools = [add, multiply, divide]
tools_by_name = {tool.name: tool for tool in tools}
model_with_tools = model.bind_tools(tools)
from langgraph.graph import add_messages
from langchain.messages import (
SystemMessage,
HumanMessage,
ToolCall,
)
from langchain_core.messages import BaseMessage
from langgraph.func import entrypoint, task
# Step 2: Define model node
@task
def call_llm(messages: list[BaseMessage]):
"""LLM decides whether to call a tool or not"""
return model_with_tools.invoke(
[
SystemMessage(
content="You are a helpful assistant tasked with performing arithmetic on a set of inputs."
)
]
+ messages
)
# Step 3: Define tool node
@task
def call_tool(tool_call: ToolCall):
"""Performs the tool call"""
tool = tools_by_name[tool_call["name"]]
return tool.invoke(tool_call)
# Step 4: Define agent
@entrypoint()
def agent(messages: list[BaseMessage]):
model_response = call_llm(messages).result()
while True:
if not model_response.tool_calls:
break
# Execute tools
tool_result_futures = [
call_tool(tool_call) for tool_call in model_response.tool_calls
]
tool_results = [fut.result() for fut in tool_result_futures]
messages = add_messages(messages, [model_response, *tool_results])
model_response = call_llm(messages).result()
messages = add_messages(messages, model_response)
return messages
# Invoke
messages = [HumanMessage(content="Add 3 and 4.")]
for chunk in agent.stream(messages, stream_mode="updates"):
print(chunk)
print("\n")
Use the Graph API¶
1. Define tools and model¶
在這個範例中,我們將使用 Claude Sonnet 4.5 模型,並定義加法、乘法和除法工具。
from langchain.tools import tool
from langchain.chat_models import init_chat_model
model = init_chat_model(
"claude-sonnet-4-5-20250929",
temperature=0
)
# Define tools
@tool
def multiply(a: int, b: int) -> int:
"""Multiply `a` and `b`.
Args:
a: First int
b: Second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Adds `a` and `b`.
Args:
a: First int
b: Second int
"""
return a + b
@tool
def divide(a: int, b: int) -> float:
"""Divide `a` and `b`.
Args:
a: First int
b: Second int
"""
return a / b
# Augment the LLM with tools
tools = [add, multiply, divide]
tools_by_name = {tool.name: tool for tool in tools}
model_with_tools = model.bind_tools(tools)
2. Define state¶
Graph 的狀態用於儲存訊息和 LLM 呼叫次數。
Info
帶有 operator.add 的註解類型可確保新訊息追加到現有訊息清單中,而不是取代它。
from langchain.messages import AnyMessage
from typing_extensions import TypedDict, Annotated
import operator
class MessagesState(TypedDict):
messages: Annotated[list[AnyMessage], operator.add]
llm_calls: int
3. Define model node¶
模型節點用於呼叫 LLM 並決定是否呼叫工具。
from langchain.messages import SystemMessage
def llm_call(state: dict):
"""LLM decides whether to call a tool or not"""
return {
"messages": [
model_with_tools.invoke(
[
SystemMessage(
content="You are a helpful assistant tasked with performing arithmetic on a set of inputs."
)
]
+ state["messages"]
)
],
"llm_calls": state.get('llm_calls', 0) + 1
}
4. Define tool node¶
工具節點用於呼叫工具並傳回結果。
from langchain.messages import ToolMessage
def tool_node(state: dict):
"""Performs the tool call"""
result = []
for tool_call in state["messages"][-1].tool_calls:
tool = tools_by_name[tool_call["name"]]
observation = tool.invoke(tool_call["args"])
result.append(ToolMessage(content=observation, tool_call_id=tool_call["id"]))
return {"messages": result}
5. Define end logic¶
Conditional edge function 用於根據 LLM 是否發出工具呼叫來路由到工具節點或終點。
from typing import Literal
from langgraph.graph import StateGraph, START, END
def should_continue(state: MessagesState) -> Literal["tool_node", END]:
"""Decide if we should continue the loop or stop based upon whether the LLM made a tool call"""
messages = state["messages"]
last_message = messages[-1]
# If the LLM makes a tool call, then perform an action
if last_message.tool_calls:
return "tool_node"
# Otherwise, we stop (reply to the user)
return END
6. Build and compile the agent¶
該代理程式是使用 StateGraph 類別建構的,並使用 compile 方法進行編譯。
# Build workflow
agent_builder = StateGraph(MessagesState)
# Add nodes
agent_builder.add_node("llm_call", llm_call)
agent_builder.add_node("tool_node", tool_node)
# Add edges to connect nodes
agent_builder.add_edge(START, "llm_call")
agent_builder.add_conditional_edges(
"llm_call",
should_continue,
["tool_node", END]
)
agent_builder.add_edge("tool_node", "llm_call")
# Compile the agent
agent = agent_builder.compile()
# Show the agent
from IPython.display import Image, display
display(Image(agent.get_graph(xray=True).draw_mermaid_png()))
# Invoke
from langchain.messages import HumanMessage
messages = [HumanMessage(content="Add 3 and 4.")]
messages = agent.invoke({"messages": messages})
for m in messages["messages"]:
m.pretty_print()
恭喜!您已使用 LangGraph Graph API 建置了您的第一個代理程式。
完整程式碼範例
# Step 1: Define tools and model
from langchain.tools import tool
from langchain.chat_models import init_chat_model
model = init_chat_model(
"claude-sonnet-4-5-20250929",
temperature=0
)
# Define tools
@tool
def multiply(a: int, b: int) -> int:
"""Multiply `a` and `b`.
Args:
a: First int
b: Second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Adds `a` and `b`.
Args:
a: First int
b: Second int
"""
return a + b
@tool
def divide(a: int, b: int) -> float:
"""Divide `a` and `b`.
Args:
a: First int
b: Second int
"""
return a / b
# Augment the LLM with tools
tools = [add, multiply, divide]
tools_by_name = {tool.name: tool for tool in tools}
model_with_tools = model.bind_tools(tools)
# Step 2: Define state
from langchain.messages import AnyMessage
from typing_extensions import TypedDict, Annotated
import operator
class MessagesState(TypedDict):
messages: Annotated[list[AnyMessage], operator.add]
llm_calls: int
# Step 3: Define model node
from langchain.messages import SystemMessage
def llm_call(state: dict):
"""LLM decides whether to call a tool or not"""
return {
"messages": [
model_with_tools.invoke(
[
SystemMessage(
content="You are a helpful assistant tasked with performing arithmetic on a set of inputs."
)
]
+ state["messages"]
)
],
"llm_calls": state.get('llm_calls', 0) + 1
}
# Step 4: Define tool node
from langchain.messages import ToolMessage
def tool_node(state: dict):
"""Performs the tool call"""
result = []
for tool_call in state["messages"][-1].tool_calls:
tool = tools_by_name[tool_call["name"]]
observation = tool.invoke(tool_call["args"])
result.append(ToolMessage(content=observation, tool_call_id=tool_call["id"]))
return {"messages": result}
# Step 5: Define logic to determine whether to end
from typing import Literal
from langgraph.graph import StateGraph, START, END
# Conditional edge function to route to the tool node or end based upon whether the LLM made a tool call
def should_continue(state: MessagesState) -> Literal["tool_node", END]:
"""Decide if we should continue the loop or stop based upon whether the LLM made a tool call"""
messages = state["messages"]
last_message = messages[-1]
# If the LLM makes a tool call, then perform an action
if last_message.tool_calls:
return "tool_node"
# Otherwise, we stop (reply to the user)
return END
# Step 6: Build agent
# Build workflow
agent_builder = StateGraph(MessagesState)
# Add nodes
agent_builder.add_node("llm_call", llm_call)
agent_builder.add_node("tool_node", tool_node)
# Add edges to connect nodes
agent_builder.add_edge(START, "llm_call")
agent_builder.add_conditional_edges(
"llm_call",
should_continue,
["tool_node", END]
)
agent_builder.add_edge("tool_node", "llm_call")
# Compile the agent
agent = agent_builder.compile()
from IPython.display import Image, display
# Show the agent
display(Image(agent.get_graph(xray=True).draw_mermaid_png()))
# Invoke
from langchain.messages import HumanMessage
messages = [HumanMessage(content="Add 3 and 4.")]
messages = agent.invoke({"messages": messages})
for m in messages["messages"]:
m.pretty_print()